Plant Electrical Signal Classification Based on Waveform Similarity
نویسندگان
چکیده
(1) Background: Plant electrical signals are important physiological traits which reflect plant physiological state. As a kind of phenotypic data, plant action potential (AP) evoked by external stimuli—e.g., electrical stimulation, environmental stress—may be associated with inhibition of gene expression related to stress tolerance. However, plant AP is a response to environment changes and full of variability. It is an aperiodic signal with refractory period, discontinuity, noise, and artifacts. In consequence, there are still challenges to automatically recognize and classify plant AP; (2) Methods: Therefore, we proposed an AP recognition algorithm based on dynamic difference threshold to extract all waveforms similar to AP. Next, an incremental template matching algorithm was used to classify the AP and non-AP waveforms; (3) Results: Experiment results indicated that the template matching algorithm achieved a classification rate of 96.0%, and it was superior to backpropagation artificial neural networks (BP-ANNs), supported vector machine (SVM) and deep learning method; (4) Conclusion: These findings imply that the proposed methods are likely to expand possibilities for rapidly recognizing and classifying plant action potentials in the database in the future.
منابع مشابه
Design of Monophasic Spike-Exponential Waveform for Functional Electrical Stimulator Based on Pulse Width Modulation
The Functional Electrical Stimulator design using monophasic spike-exponential waveform was proposed and described in this study. The monophasic square waveform has benefit in generating an action potential, but it could cause side effects such as toxic caused by the electrode polarization. The square waveform signal which the frequency and pulse width could be modulated was manipulated to be t...
متن کاملInternal Fault Detection, Location, and Classification in Stator Winding of the Synchronous Generators Based on the Terminal Voltage Waveform
In this paper, a novel method is presented for detection and classification of the faultyphase/region in the stator winding of synchronous generators on the basis of the resulting harmoniccomponents that appear in the terminal voltage waveforms. Analytical results obtained through DecisionTree (DT) show that the internal faults are not only detectable but also they can be classified andthe rela...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملA Robust SAR NLFM Waveform Selection Based on the Total Quality Assessment Techniques
Design, simulation and optimal selection of cosine-linear frequency modulation waveform (CNLFM) based on correlated ambiguity function (AF) method for the purpose of Synthetic Aperture Radar (SAR) is done in this article. The selected optimum CNLFM waveform in contribution with other waveforms are applied directly into a SAR image formation algorithm (IFA) and their quality effects performance ...
متن کاملLidar Waveform Classification Using Self-organizing Map
Most commercial LIDAR systems temporarily record the entire laser pulse echo signal, called full-waveform, as a function of time to extract the return pulses at data acquisition level in real-time; typically up to 4-5 returns. The new generation of airborne laser scanners, the full-waveform LiDAR systems, are not only able to digitize but can record the entire backscattered signal of each emitt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithms
دوره 9 شماره
صفحات -
تاریخ انتشار 2016